5,944 research outputs found

    Scanner Invariant Representations for Diffusion MRI Harmonization

    Get PDF
    Purpose: In the present work we describe the correction of diffusion-weighted MRI for site and scanner biases using a novel method based on invariant representation. Theory and Methods: Pooled imaging data from multiple sources are subject to variation between the sources. Correcting for these biases has become very important as imaging studies increase in size and multi-site cases become more common. We propose learning an intermediate representation invariant to site/protocol variables, a technique adapted from information theory-based algorithmic fairness; by leveraging the data processing inequality, such a representation can then be used to create an image reconstruction that is uninformative of its original source, yet still faithful to underlying structures. To implement this, we use a deep learning method based on variational auto-encoders (VAE) to construct scanner invariant encodings of the imaging data. Results: To evaluate our method, we use training data from the 2018 MICCAI Computational Diffusion MRI (CDMRI) Challenge Harmonization dataset. Our proposed method shows improvements on independent test data relative to a recently published baseline method on each subtask, mapping data from three different scanning contexts to and from one separate target scanning context. Conclusion: As imaging studies continue to grow, the use of pooled multi-site imaging will similarly increase. Invariant representation presents a strong candidate for the harmonization of these data

    A fast pruned‐extreme learning machine for classification problem

    Get PDF
    Agency for Science, Technology and Research (A*STAR) Science and Engineering Research Counci

    Cost-aware Generalized α\alpha-investing for Multiple Hypothesis Testing

    Full text link
    We consider the problem of sequential multiple hypothesis testing with nontrivial data collection costs. This problem appears, for example, when conducting biological experiments to identify differentially expressed genes of a disease process. This work builds on the generalized α\alpha-investing framework which enables control of the false discovery rate in a sequential testing setting. We make a theoretical analysis of the long term asymptotic behavior of α\alpha-wealth which motivates a consideration of sample size in the α\alpha-investing decision rule. Posing the testing process as a game with nature, we construct a decision rule that optimizes the expected α\alpha-wealth reward (ERO) and provides an optimal sample size for each test. Empirical results show that a cost-aware ERO decision rule correctly rejects more false null hypotheses than other methods for n=1n=1 where nn is the sample size. When the sample size is not fixed cost-aware ERO uses a prior on the null hypothesis to adaptively allocate of the sample budget to each test. We extend cost-aware ERO investing to finite-horizon testing which enables the decision rule to allocate samples in a non-myopic manner. Finally, empirical tests on real data sets from biological experiments show that cost-aware ERO balances the allocation of samples to an individual test against the allocation of samples across multiple tests.Comment: 26 pages, 5 figures, 8 table

    Neurite Orientation Dispersion and Density Imaging Color Maps to Characterize Brain Diffusion in Neurologic Disorders

    Get PDF
    Purpose: Neurite orientation dispersion and density imaging (NODDI) has recently been developed to overcome diffusion technique limitations in modeling biological systems. This manuscript reports a preliminary investigation into the use of a single color-coded map to represent NODDI-derived information. Materials and methods: An optimized diffusion-weighted imaging protocol was acquired in several clinical neurological contexts including demyelinating disease, neoplastic process, stroke, and toxic/metabolic disease. The NODDI model was fitted to the diffusion datasets. NODDI is based on a three-compartment diffusion model and provides maps that quantify the contributions to the total diffusion signal in each voxel. The NODDI compartment maps were combined into a single 4-dimensional volume visualized as RGB image (red for anisotropic Gaussian diffusion, green for non-Gaussian anisotropic diffusion, and blue for isotropic Gaussian diffusion), in which the relative contributions of the different microstructural compartments can be easily appreciated. Results: The NODDI color maps better describe the heterogeneity of neoplastic as well inflammatory lesions by identifying different tissue components within areas apparently homogeneous on conventional imaging. Moreover, NODDI color maps seem to be useful for identifying vasogenic edema differently from tumor-infiltrated edema. In multiple sclerosis, the NODDI color maps enable a visual assessment of the underlying microstructural changes, possibly highlighting an increased inflammatory component, within lesions and potentially in normal-appearing white matter. Conclusion: The NODDI color maps could make this technique valuable in a clinical setting, providing comprehensive and accessible information in normal and pathological brain tissues in different neurological pathologies
    • 

    corecore